Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Kvantumugrásra készen az AWS

Az Amazon Web Services (AWS) mérnökei újradefiniálták a kvantumchipek építésének alapelveit és ahelyett, hogy pusztán több kvantumbitet (qubitet) adtak volna össze, inkább a zajok hatékonyabb kiküszöbölésére összpontosítottak. Megszületett az Ocelot kvantumchip prototípus, ami a becsléseik szerint akár öt évvel is felgyorsíthatja a kvantumszámítógépek széles körű elérhetőségét.

Hogyan működnek a kvantumszámítógépek?

A kvantumszámítógépek és a hagyományos számítógépek közötti fő különbség az adatok tárolásának módjában rejlik. A klasszikus számítógépek biteket használnak, ahol az információ 0 vagy 1 formájában tárolódik. Ezzel szemben a kvantumszámítógépek kvantumbiteket (qubiteket), amelyek jellemzően elemi részecskék – például elektronok vagy fotonok – és a kvantummechanikai tulajdonságaik révén egyidejűleg lehetnek 0 és 1 állapotban is. Ez lehetővé teszi, hogy egyes problémákat exponenciálisan gyorsabban oldjanak meg, mint a klasszikus számítógépek, ha azok valaha is képesek lennének rá.

Hol a probléma?

A qubitek rendkívüli számítási teljesítményt biztosítanak, ám van egy nagy hátrányuk: rendkívül érzékenyek. Állapotukat külső tényezők, például rezgések, hő, mobilhálózatok, Wi-Fi jelek, sőt még a kozmikus sugárzás is megzavarhatja. A külső „zajok” hatásának kiküszöbölése érdekében a kvantumszámítógépek információit több qubit együttesen tárolja, létrehozva az úgynevezett logikai kvantumbiteket, amelyek képesek a hibák kijavítására. Azonban a megfelelő számítási teljesítmény eléréséhez szükséges qubitek mennyisége drágává és bonyolulttá teszi ezt a technológiát.

Hogyan gyorsítaná fel az AWS a kvantumszámítógépek elérhetőségét?

„Az elejétől fogva a kvantumhiba-korrekció volt a legfontosabb szempont a kvantumbit és az architektúra kiválasztásában. Ha gyakorlati kvantumszámítógépeket akarunk építeni, a hiba-korrekció elsődleges kell legyen.”

– mondta Oskar Painter, az AWS kvantumhardverért felelős igazgatója.

Mi az a kvantumhiba-korrekció?

Képzeljünk el egy minőségellenőrzési rendszert egy gyártósoron, ahol a termékek hibáinak kiszűréséhez 10 ellenőrző pont helyett elég lenne egyetlen egy. A végeredmény ugyanaz marad, de kevesebb erőforrásra van szükség és az egész folyamat hatékonyabbá válik. Az AWS szerint az Ocelot és ehhez hasonló fejlesztések lehetővé tehetik, hogy a kvantumszámítógépek kisebbek, megbízhatóbbak és olcsóbbak legyenek.

Az Ocelot prototípus kvantumchip az első lépés az AWS új architektúrájának tesztelésére, amely beépített kvantumhiba-korrekciót alkalmaz. Az Ocelot alapját a „macskaqubitek” (Schrödinger macskájáról elnevezett qubitek1) adják, amelyek önmagukban képesek hibák kijavítására. Emellett a chip a jelenlegi mikroelektronikai technológiákat is felhasználja.

Mi a következő lépés?

„Jelenleg az a legfontosabb feladatunk, hogy folyamatosan innováljunk a kvantumszámítástechnika minden területén: vizsgáljuk az architektúránkat és ezekből a tapasztalatokból építkezve fejlesszük mérnöki megoldásainkat.”

– mondta zárásként Oskar Painter.

1 https://hu.wikipedia.org/wiki/Schr%C3%B6dinger_macsk%C3%A1ja